
Chapter 1

Installation and Initial Setup

Installation and Setup on Windows

Running the Installer
Crossrunner requires Windows 7 64 bit or later. A compatible game controller, such as an Xbox controller, is

recommended for software that requires a joystick. Npcap (or equivalent) is required for low-level Uthernet II

emulation.

❖ Crossrunner performs much lower-level emulation than existing emulators including KEGS and Sweet

16, and as such requires a more powerful machine to run. However, it should run on any machine capable

of running Windows 7. If your aim is maximum emulated machine speed, rather than emulation accuracy,

then it is recommended that you choose another emulator.

Double-click on the “Crossrunner.msi” installer file to launch the installer. Click the “Next” button.

Select the directory where you want to install Crossrunner, or keep the default selection, and then click “Next”.

Click the “Install” button to begin the install.

Click the “Finish” button to exit the installer.

Crossrunner should now be installed, and you should be able to launch it from the Start button.

Starting Crossrunner for the first time
When you launch Crossrunner for the first time, it presents you with a Setup Wizard. At a minimum, you need to

provide it with a set of ROM files for either a ROM01 Apple IIGS or a ROM03 Apple IIGS.

You can optionally provide it with both ROM01 and ROM03 ROM files, which will allow you to easily switch

between the two whenever you want.

You can optionally provide it with the source code to the Apple IIGS ROM’s. This is a feature primarily of benefit

to programmers. If the source code files are provided then the built-in debugger inside Crossrunner will display

the actual Apple IIGS source code for the firmware, instead of just a raw disassembly. This makes it much more

pleasant to debug inside ROM code.

❖ ROM source code is currently only available for the ROM03 Apple IIGS. Therefore, you will only see

source code when your current machine is set to ROM03.

Apple IIGS ROM01 files are typically called ‘ROM01’, which is a 128KB file, and ‘341s0345.bin’, which is a

3KB file.

Apple IIGS ROM03 files are typically called ‘ROM03’, which is a 256KB file, and ‘341s0632-2.bin’, which is a

4KB file.

❖ Crossrunner emulates the Apple Desktop Bus (ADB) subsystem, which is a whole “machine” in itself –

with its own 6502 based processor, its own ROM, and its own RAM. This differs from other emulators

including KEGS and Sweet 16 which provide a higher-level abstraction of the machine and therefore do

not require ADB ROMs. With Crossrunner you need to provide an ADB ROM file (341s0xxx.bin) in

addition to the main Apple IIGS ROM files.

Click the “Next >” button to begin.

Click the “Add…” button and navigate to a directory where the ROM files can be located. Click the “Select

Folder” button when you are in the correct directory. The list of ROM files will be populated with all matching

files.

Next to each ROM file that it finds it will display the type of ROM that it detected. This will be either ROM01

(Main), ROM01 (ADB), ROM03 (Main) or ROM03 (ADB).

At a minimum you need one pair of ROM01 files or one pair of ROM03 files.

If your ROM files are spread over multiple directories, then you can click the “Add…” button again and pick

another directory. Crossrunner will then add any additional ROM files it finds to the list.

Alternatively, you can click on the “Download” button to automatically download the ROM’s from the Internet.

❖ Please comply with the laws of the country in which you are located. Some countries may not permit you

to download ROM’s even if you own an Apple IIGS with the matching ROM’s.

Once you have added all the ROM files click the “Next >” button.

This next stage is completely optional. If you want to specify a directory containing the Apple IIGS ROM source

code then click the “Add…” button and select a directory containing the source code.

Otherwise, click “Finish” to complete the Setup Wizard.

The screenshot below shows what the list should look like if you choose to add the Apple IIGS ROM source code.

Configuring your first system
Crossrunner should now display its main window, with a single system displayed.

You can now configure “My System” how you like it. Right-click on “My System” and select “Edit…” from the

popup menu.

This will bring up the Edit System dialog. Here you can configure where it is a ROM01 or ROM03 machine, how

much memory is in the machine, and whether the machine runs at standard IIGS speeds (2.8 MHz) or whether it

runs at accelerated speeds (7 MHz, 14 MHz) as would be the case if you had a TransWarp GS or ZIP GSX

accelerator card in a real machine.

All seven slots are listed. By default these slots will be empty, but you can insert expansion cards into slots as you

desire.

It is recommended to start by adding a SCSI card to Slot 7. Go to the Slot 7 combo box and select “SCSI card”

from the list of options.

You will notice that a new tab appears at the bottom of the dialog labelled “Slot 7 Images”.

You can mount up to 12 hard drive images in each slot with a SCSI card. These are labelled S7D1 (Slot 7 drive

1) through to S7D12 (Slot 7 drive 12). Click on the “…” button next to each drive to select a disk image to mount

in that spot.

In the screenshot above, we have mounted the popular “Total Replay” disk image into S7D1 as an example.

❖ Hard drive images have a file extension of either “.po”, “.2mg”, or “.hdv”.

Click “OK” to save the configuration for “My System”.

Uthernet II emulation
You can optionally add an “Uthernet II” card in the Edit System dialog. Software that uses the Uthernet II can use

the card it in two different ways – a high level TCP or UDP socket interface, or a low level Raw Ethernet interface.

Crossrunner supports both, but requires Npcap (www.npcap.com) to be installed if you require the low level Raw

Ethernet interface. Note that both Marinetti’s Uthernet II link layer and A2OSX require the low level interface.

Click the “…” button next to the Uthernet II in the Edit System dialog to configure which network adapter Npcap

will use for the low level Ethernet interface.

Adding disk images to your library
You can optionally add disk images to your library. There are several reasons you may choose to do this:

• It allows you to quickly launch some of your favourite games using the correct settings for the game.

• It allows you to quickly switch between disks for multi-disk games.

• It allows you to view the beautiful box art that most Apple II software titles had.

Go to the “File” menu and select “Add to Library…”.

There are three different ways of adding titles to your library:

http://www.npcap.com/

• You can download titles from the Internet.

• You can manually add a title to your library.

• You can scan a folder on your hard drive to find known titles.

Downloading title(s) from the Internet
The first thing you must do is to enter some search criteria for your search. Fill in one or more of the search criteria

fields. You must fill in at least one field. In the example above, we have searched for all titles from “Brutal

Deluxe”. Click the “Search” button to search for matches.

Matching titles will be then be displayed. Next to each title there will be a green circle. Click on the green circle

to mark that title for downloading. In the example above, “Dragon’s Lair” is selected for downloading but the

sequels are not. Click the “OK” button to begin downloading.

❖ Please comply with the laws of the country in which you are located. Some countries may not permit you

to download software than you already own.

Manually adding a title
Select the “Manually add a title” radio button. You will have to enter the Name for the Title, and then select which

Platform it was made for using the drop down. Next, you will need to click the “Add…” button and pick the disk

images associated with that title.

Click the “OK” button to add the title to the library. The title will be added with a default image, and all other title

attributes will be blank. You can right-click on the title in the library to edit the title and change all these values

if you want to.

Scan a folder for known titles
If you already have disk images on your hard drive, then you can select the “Scan a folder for known titles” option.

Click the “Scan Folder…” to pick a folder to scan. Crossrunner will now search for disk images in the folder you

have selected, and also all subfolders of that folder. It will then attempt to match those disk images against its

database of known disk images.

The Scan Results will show all disk images that were found in the folder, and the “Status” column will show either

“Known” or “Unknown”. If the title is Unknown then Crossrunner does not know what to do with it, and these

titles will not be added. You will have to manually add these titles.

Click the “OK” button to add all titles that have disk images with a “Known” status.

Regardless of which of the three different ways to add titles to the library you have selected, the main window

will be updated with a list of all software titles that have been added. The titles will be grouped into one of two

categories – “Apple II” for 8 bit software titles, and “Apple IIGS” for 16 bit software titles.

Next to each software title it displays a short description of the title, the company that developed and published

the title, the year the title was released, and the genre for the title.

You can sort the list by any of these fields.

You can right-click on any of these titles to bring up a popup menu. If you select “Edit…” from the popup menu

it will allow you to make changes to the selected title.

The “Edit Title” dialog is shown below. On the first tab you can configure the fields that will be displayed in the

list including the name of the title and a description of the title.

In the “Hardware” tab you can configure the hardware configuration that will be used when running that title.

For example, some titles may run better on an accelerated machine while others may run better at 1 MHz or 2.8

MHz. Some 8-bit software titles may take advantage of a Mockingboard card, in which case you can configure

the machine to always include a Mockingboard card when running that title.

Click “OK” when you have finished making changes.

While you can just insert disks into floppy drives in the emulator on an ad-hoc basis instead of adding software

titles to a library, you will miss out on some of the features.

In the screenshot below, we are running Time Zone from our software library. Time Zone is a 12 disk game

with lots of disk swapping required! When you right-click on the floppy drive while running it, it gives you a

“quick list” of all the disk images that make up that title – allowing you to swap disks quickly!

Chapter 2

Menu Options

File menu

Add to Library… – Adds titles to your software library. See Chapter 1 for details on how to add titles to your

library.

Close – This menu item will be enabled when the emulator is running. This will close the current emulation

session and return you to the main screen.

Load State… – Prompts you for a Save State file and then restores the emulator state from that file.

Save State… – Prompts you for a file to save the current emulator state into. You can then use the Load State

menu item to restore the emulator back to this state at any time you want.

Quick Load State – Restores the emulator state from a global snapshot file without any prompting.

Quick Save State – Saves the emulator state to a global snapshot file without any prompting.

Edit menu

Go To – When editing a file on a disk image or in the script editor it will prompt you for the line number to go

to. When using the Debugger, this will prompt you for the memory address to go to. This functionality is described

in more detail in Chapter 3.

Find and Replace > Quick find – When editing a file on a disk image or in the script editor this will bring up the

Quick Find overlay where you can type in the text that you wish to search for. When using the Debugger, this will

allow you to search for source code associated with the current bank of memory. This functionality is described

in more detail in Chapter 3.

Find and Replace > Quick replace – When editing a file on a disk image or in the script editor this will bring up

the Quick Replace overlay where you can type in the text that you wish to search for, the text you want to replace

it with and then you can either replace each occurrence on a case-by-case basis, or choose to replace all matches.

Undo, Redo, Copy, Cut, Paste, Delete, Select All – these are the standard clipboard actions.

Cancel Paste – This is enabled when you attempt to paste a large amount of data from the clipboard into the

emulated machine, as pasting can take a long time depending on what you are running and how much data you

are pasting. This will cancel the paste operation currently in process.

Make Uppercase – This will convert the currently selected text to uppercase. This is enabled when editing files

on disk images or when using the script editor.

Make Lowercase – This will convert the currently selected text to lowercase. This is enabled when editing files

on disk images or when using the script editor.

View White Space – When enabled white space (spaces, tabs) will be displayed using symbols making it easier

to count the number of spaces or to identify where tabs are used instead of spaces and vice versa. This is enabled

when editing files on disk images or when using the script editor.

Increase Line Indent – This will increase the indentation for the currently selected text. This is enabled when

editing files on disk images or when using the script editor.

Decrease Line Indent – This will decrease the indentation for the currently selected text. This is enabled when

editing files on disk images or when using the script editor.

Comment Selection – This will comment out the currently selected text. This will use the commenting sequence

associated with the current file type – for example “//” for C and Wren, “(* *)” for Pascal, and “*” for assembler.

This is enabled when editing files on disk images or when using the script editor.

Uncomment Selection – This will uncomment the currently selected text. This is enabled when editing files on

disk images or when using the script editor.

View menu

Solution Explorer – This functionality is disabled in the current version of Crossrunner.

Output – This functionality is disabled in the current version of Crossrunner.

Shell – This will bring up the Shell pane, which is described in Chapter 4.

Scripting – This will bring up the Script editor, which is described in Chapter 6.

Script Log – This will bring up the Script Log, which is described in Chapter 6.

Monitor > Integral Scaling – This will ensure that the monitor is only scaled using an integral scaling factor –

for example – 1x, 2x, 3x, 4x and so on. This will ensure the sharpest display quality but it will mean that the

monitor may not take up all available space on the screen.

Monitor > Stretch to fit – This will expand the monitor to fit the available screen real estate.

Monitor > No forced Aspect Ratio – When combined with Stretch to fit it will allow the monitor to use all

available screen real estate regardless of aspect ratio. This may result in a display that is either too wide or too

skinny. If Integral Scaling is enabled, that will take precedence over this setting.

Monitor > 1:1 Aspect Ratio – When combined with Stretch to fit this will make the monitor use the same aspect

ratio as the host system. If Integral Scaling is enabled, that will take precedence over this setting.

Monitor > 1:1.25 Aspect Ratio – When combined with Stretch to fit this will make the monitor use an aspect

ratio that is slightly taller than the aspect ratio of modern displays. This will closely match the aspect ratio of the

Apple II. If Integral Scaling is enabled, that will take precedence over this setting.

Monitor > Show borders – When enabled this will display the border area of the Apple IIGS monitor. Some

Apple IIGS software (mainly demos) used the border area for graphics. Disabling the border area will free up this

space.

Monitor > Landscape orientation – The default monitor orientation.

Monitor > Portrait orientation – This will rotate the monitor 90 degrees into Portrait mode. There are a very

small number of Apple II games that require you to run the monitor this way – for example, early versions of

Alien Rain and Snoggle. These games ran in portrait mode because they were based on Arcade games that ran

with the CRT rotated into Portrait mode. However, later versions were re-released in Landscape orientation –

presumably after Broderbund received complaints from users.

Monitor > Green monochrome monitor – This will change the monitor into a monochrome monitor (Green).

Monitor > Amber monochrome monitor – This will change the monitor into a monochrome monitor (Amber).

Monitor > Composite colour monitor – This will change the monitor into a NTSC composite colour monitor.

There are a small number of 8 bit Apple II games that look better in NTSC composite than in RGB. NTSC quirks

mean that there will be all kinds of colour artefacts being displayed – such as yellows and pinks in High Res mode.

Note that the Apple IIGS hardware is, unlike earlier machines, an RGB native system and it therefore generates a

composite image in a different manner to earlier Apple II systems. This composite image quality is widely

regarded as inferior to the 8 bit Apple II machines. Crossrunner, therefore does not attempt to emulate the Apple

IIGS version of Composite but rather the Apple IIe version of Composite. This can be considered similar to putting

a VidHD card into the Apple IIGS, which makes the IIGS output 8 bit graphics in a manner closer to the original

8 bit machines.

Monitor > RGB colour monitor – This will change the monitor into an AppleColor RGB monitor. It will

generate the sharpest image, while preserving the characteristics of that monitor – such as dithered 640 colours

appearing as a proper colour instead of lines of alternating colours.

Monitor > Fullscreen mode – This will toggle Crossrunner into Fullscreen mode. The menu bar and the drive

bar will disappear, and the full screen will be used for the monitor. Use Alt+Enter to leave fullscreen mode.

Debugging > Registers – This will show the Registers pane. This is described in more detail in Chapter 3.

Debugging > Watch – This will show the Watch pane. This is described in more detail in Chapter 3.

Debugging > Ensoniq – This will show the Ensoniq pane. This is described in more detail in Chapter 3.

Debugging > Breakpoints – This will show the Breakpoints pane. This is described in more detail in Chapter 3.

Debugging > Memory 1 – This will show the first instance of the Memory pane. This is described in more detail

in Chapter 3.

Debugging > Memory 2 – This will show a second instance of the Memory pane. This is described in more detail

in Chapter 3.

Debugging > Memory Map – This will show the Memory Map pane. This is described in more detail in Chapter

3.

Debugging > Monitor 1 – This will show the first instance of the Monitor pane. This is described in more detail

in Chapter 3.

Debugging > Monitor 2 – This will show a second instance of the Memory pane. This is described in more detail

in Chapter 3.

View As > Tiles – This will change the Library view to a Tile based layout. This maximises the size of box art

and removes all text other than the game title.

View As > Details – This will change the Library view to a List based layout, with a description of each title and

details about the publisher, developer, year and genre.

Group By > Platform, Publisher, Developer, Year, Genre – This will group the Library view by the selected

category. For example, grouping by Platform will group all the Apple II games into a group and all the Apple

IIGS games into another group. Whereas grouping by Genre will group all the Action games into a group

regardless of whether they are 8 bit or 16 bit titles.

Sort By > Name, Publisher, Developer, Year, Genre – This will sort the Library view using the selected criteria.

Machine menu

1 MHz, 2.8 MHz, 7 MHz, 14 MHz, Unlimited Speed – This will set the speed of the emulated machine. 1 MHz

will match the speed of the 8 bit Apple II’s. 2.8 MHz will match the speed of a stock Apple IIGS. 7 MHz will

match the speed of an Apple IIGS with a Transwarp GS accelerator card. 14 MHz will match the speed of an

Apple IIGS with the latest Applesqueezer accelerator card. Unlimited speed will allow the emulated machine to

run as fast as possible.

Reset – This is equivalent to pressing Ctrl+Reset on the keyboard.

Reboot – This is equivalent to pressing Ctrl+Open Apple+Reset on the keyboard. This will reboot the machine.

Control Panel – This is equivalent to pressing Ctrl+Open Apple+Escape on the keyboard. It will bring up the

Apple IIGS Control Panel.

Pause – This will pause the emulated machine. Select this option again to unpause the machine.

Mute Audio – This will mute audio generated by the emulated machine. Select this option again to unmute the

audio.

Capture Mouse – In Apple IIGS desktop applications Crossrunner will try to automatically synchronise the host

machine’s mouse position with the emulated machine’s mouse position for a seamless experience. However, it

may be preferable in some titles for the emulated machine to take full control over mouse input. This is called

“capturing the mouse”. When the mouse is captured you will be unable to use the mouse in Windows, as all mouse

input will be sent to the emulated machine. This is perfect for games like Crystal Quest. To remove the mouse

capture, hold down the Control key while clicking the right mouse button.

Take Screenshot – This will take a screenshot of the emulated machine’s screen and save it to a PNG file on

disk. The file will always be saved at native, unscaled, resolution. Screenshots will be saved in the default

“Pictures” folder that has been configured in Windows inside a folder called “Screenshots”.

Debug menu

Build – This functionality is disabled in the current version of Crossrunner.

Clean – This functionality is disabled in the current version of Crossrunner.

Start Debugging – This will change the emulated machine/program to a running state inside the Debugger. It

will keep running until it either hits a breakpoint, or you manually Break execution.

Start Without Debugging – This will change the emulated machine/program to a running state, but not inside

the Debugger. This will maximise screen real estate for the monitor.

Break – This will halt the emulated machine if it is running, and change Crossrunner to Debugging mode.

Stop Debugging – This will close the current emulation session and return you to the main screen.

Step Into – When the emulated machine is halted in the Debugger, this option will execute a single machine

language instruction and then halt. If the instruction is a Jump to Subroutine (JSR) then the machine will enter

that subroutine and halt on the first instruction within that subroutine.

Step Over – When the emulated machine is halted in the Debugger, this option will execute a single machine

language instruction and then halt. However, if the instruction is a Jump to Subroutine (JSR) then the Debugger

will execute that entire subroutine as though it were a single instruction. The machine will then halt on the

instruction after the JSR.

Toggle Breakpoint – This will toggle a breakpoint at the selected address within the Debugger.

Reset Profiling Data – Resets all internal profiling information, including the cycle counts associated with each

memory address. You will typically reset the profiling data when you have hit a breakpoint where you wish to

begin profiling. This option will then clear all data prior to that point.

Help menu

About… – This will display the About Crossrunner screen, with the Crossrunner mascot!

Chapter 3

Debugging

Activating the Debugger

There are several ways to activate the Debugger:

1. While something is running you can go to the “Debug” menu and select “Break”. The debugger will be

set to the line that was currently executing.

2. You can right-click on a System or a Title and select “Debug” from the popup menu. The debugger will

be set to 00/FA62, which is the Apple II’s reset vector.

3. If a previously configured breakpoint is hit then the debugger will appear and will be set to the line where

the breakpoint was triggered.

The Debugger is shown below.

In the example above on the left-hand side of the screen, we have docked a number of panes – a Monitor pane, a

Register pane, and a Memory pane. These are all optional panes and can be removed or moved around the screen

as you wish. These panes are described later in this chapter.

On the right-hand side of the screen is the source code that has been matched to the current location. In this

example below, we are within the ROM area so the source code is the Apple IIGS ROM 03 source code. If you

were debugging a RAM area which contained your code then your source code would be displayed here. If there

is no source code available for the memory location you are viewing then this area will be blank.

In the middle, there is the disassembly view. This divided into columns.

1. Address / Bytes – this first column contains the address in memory where the code/data is located and

the bytes at that location.

There is a branch indicator, if the line contains a branch instruction, which shows where the branch

destination is. If you move the cursor to a line with a branch instruction then that branch path will be

highlighted.

2. Cycle Counts – the next column contains the number of cycles that the instruction will take to execute.

3. M/X indicators – the next column contains the M and X processor flags that were used when

disassembling that address.

An uppercase ‘M’ indicates 16-bit accumulator/memory. A lowercase ‘m’ indicates 8-bit

accumulator/memory. Similarly, an uppercase ‘X’ indicates 16-bit index registers. A lowercase ‘x’

indicates 8-bit index registers. Areas that have not been disassembled, or are identified as data, will have

a ‘?’ instead.

If the disassembly uses the wrong M/X flags then you can change them by clicking on the ‘M’ or the ‘X’

– this will toggle the flag between 8-bit and 16-bit. This will also affect all lines that follow up until a

branch or a return.

For areas where the disassembler has source code, and is therefore confident about the M/X flags, then

these will be greyed out and will not be able to be toggled.

4. Disassembly – the next column contains the disassembly. If the Program Counter (PC) is at that address

then a yellow area will indicate the current execution point. This is shown in the example below.

❖ You select one or more lines that have not been disassembled, and press the “C” key (for “Code”) to

disassemble the selection.

❖ You select one or more lines that have been disassembled as code, and press the “U” key (for “Undefine”)

to remove the disassembly.

Address / Bytes
Cycle

Counts DisassemblyM/X

Go To Address / Go To Symbol
If you want to quickly jump to a different location in memory within the Debugger, then you can either press

Ctrl+G, or you can go to the “Edit” menu > “Go To…”.

At the top of the dialog is a text field where you can enter the address that you wish to jump to.

If are currently debugging an ORCA or Merlin application for which you have provided source code (see Chapter

5) then there will also be a list of symbols shown in the dialog. You can either double-click on a symbol in the

list, to go to the address where the symbol is located, or you can type the symbol’s name in the text field.

If you are not debugging an ORCA or Merlin application, but your emulated machine has booted into GS/OS,

then a list of GS/OS system memory allocations will be shown instead. This allows you to quickly locate, in

memory, where a given application resides.

Find
If you want to find some text within the source code that you are currently debugging then you can either press

Ctrl+F to bring up the Find overlay, or you can go to the “Edit” menu > “Find and replace” > “Quick Find”.

Simply type the text that you wish to search for and then hit Enter. If there are multiple matches then you can just

keep hitting Enter. An alternate to using the Enter key is to click on the → button within the Find overlay.

At the bottom of the find overlay are three buttons that can be used to customise your search. From left to right

they are:

1. Match case – If selected this will perform a case sensitive search. Otherwise it the search will be case

insensitive.

2. Whole words only – If selected this will only exclude partial matching. Otherwise partial matches will

be returned. An example of a partial match would be to find “secretary” when searching for “secret”.

3. Regular expressions – If selected then the search string will be treated as a standard regular expression.

Otherwise the search string will be treated as a literal string.

Debugging screen output

The Monitor pane displays screen output. By default the Monitor pane is displayed when the debugger is activated.

If it is not display, then you can show the main monitor pane through the “View” menu > “Debugging” > “Monitor

1”.

There is a second monitor pane available. This is not displayed by default, but can be shown by selecting “View”

> “Debugging” > “Monitor 2”. The second monitor pane is useful, for example, when debugging software that

does page flipping – you could use Monitor Pane 1 to display Hires Page 1 and Monitor Pane 2 to display Hires

Page 2.

In the top-right of the Monitor pane there is a drop down, which allows you to specify the screen that is displayed.

The default option, “Auto”, displays the screen as seen by the user. The other options let you force specific screens

to be displayed, for example “Super Hires” in the screenshot above. In this example, the contents of the Super

Hires space in memory will be displayed even if the program is currently displaying the text screen (for example).

In the top-left corner of the Monitor pane are toolbar options that control how the screen is displayed. The options

are, from left to right:

• Toggle integral scaling on/off – If selected the screen will be expanded to fill the entire monitor pane.

If deselected the screen will only use 1:1, 2:1, 4:1, etc scaling which may mean that the screen does not

fill the entire monitor pane.

• Toggle borders – This will toggle the border area of the screen on or off. If your focus is just on the

screen’s contents and you are not interested in the border area then you may want to toggle it off. If you

are debugging software that alters the border area then will want to ensure that borders are displayed.

• Enter fullscreen mode – This will enable fullscreen mode.

• Show changes ahead of the beam – By default the monitor shows the screen as the user would see it.

This means that if you change memory in an area where the beam hasn’t reached it will not be displayed

until the point in time where the beam reaches that part of the screen. If you select this option, then the

screen that is displayed will exactly match what is currently held in memory. This can be useful if you

want to modify memory and see the results immediately.

In the middle of the monitor pane, the video counters are displayed. The first value is the horizontal video counter

(that is typically accessed through $C02F). The second value is the vertical video counter (that is typically

accessed through $C02E and $C02F).

Both of these video counters have their actual hardware value displayed first, and then a user friendly value

displayed second. In this example below, the vertical video counter has a hardware value of 198 which is scanline

152 on the screen.

If you hover the mouse over the video counters then the Monitor pane will highlight where the beam is currently

up to on the screen.

Viewing and changing register values

The Registers pane allows you to view, and change, the CPU’s register values. The Register pane can be displayed

through the “View” menu > “Debugging” > “Registers”.

Displayed are the Processor Flags (P), accumulator (A), X register (X), Y register (Y), Direct Page register (DP),

the Machine State pseudo-register (M), Program Counter (PC), Program Bank register (K), Data Bank register

(B), Stack Pointer (SP) and the Quagmire pseudo-register (Q).

Next to the hexadecimal value held in the Processor Flags (P) is a breakdown of the individual bits that make up

the Processor Flag. If the bit is displayed in light grey it is unset. If the bit is displayed in black it is set.

Bit Letter Meaning

7 N Negative flag (Set = Result negative)

6 V Overflow flag (Set = Overflow occurred)

5 M / 0 Memory/Accumulator Select (Set = 16-bit, Unset = 8-bit). This is “0” in emulation mode.

4 X / B Index Register Select (Set = 16-bit, Unset = 8-bit). This is the Break flag in emulation mode.

3 D Decimal mode (Set = BCD mode, Unset = Binary mode)

2 I IRQ disable (Set = Interrupts disabled, Unset = Interrupts enabled)

1 Z Zero flag (Set = Result zero)

0 C Carry (Set = Carry)

The Machine State and Quagmire pseudo-registers are the same as what are displayed in GSBug.

The Machine State pseudo-register is located at $C068 (in any of banks $00, $01, $E0, or $E1) and is used to

access a variety of different Mega II softswitches. This register is described in detail in the Apple IIGS Hardware

Reference. The table below lists the bits that comprise this pseudo-register.

Bit Name Meaning

7 ALTZP If this bit is 0, bank-switched memory, stack, and zero page are in main memory; if it is

1, they are in auxiliary memory.

6 PAGE2 If this bit is 0, text page 1 is selected; if it is 1, text page 2 is selected.

5 RAMRD If this bit is 0, main-memory RAM is read-enabled; if it is 1, auxiliary-memory RAM is

read-enabled.

4 RAMWRT If this bit is 0, main-memory RAM is write-enabled; if it is 1, auxiliary-memory RAM

is write-enabled.

3 RDROM If this bit is 0, language-card RAM is read-enabled; if it is 1, language-card ROM is

read-enabled.

2 LCBNK2 If this bit is 0, bank 2 language-card RAM (at $D000 through $DFFF) is selected; if it

is 1, bank 1 language-card RAM is selected. Switching banks with this bit does not

write-enable language-card RAM. Use the L flag both to write-enable RAM and to

switch language-card banks.

1 ROMBANK This bit is reserved; it must equal 0.

0 INTCXROM If this bit is 0, external ROM (that is, ROM on the circuit board at $Cx00) is active; if it

is 1, internal ROM at $Cx00 is active.

The Quagmire pseudo-register is comprised of the lower seven bits of the Shadow register at $C035 and the high

bit of the Configuration register at $C036. The table below lists the bits that comprise this pseudo-register.

Bit Meaning

7 If this bit is 1, high-speed operation is on.

6 If this bit is 1, IOLC (I/O and language card) shadowing is off.

5 This bit is reserved; it must equal 1.

4 If this bit is 1, auxiliary-memory Hi-Res graphics shadowing is off.

3 If this bit is 1, Super Hi-Res graphics shadowing is off.

2 If this bit is 1, Hi-Res graphics page 2 shadowing is off.

1 If this bit is 1, Hi-Res graphics page 1 shadowing is off.

0 If this bit is 1, text page 1 shadowing is off.

You can edit the contents of any register by clicking on the register value. In the example below, the user has

clicked on the Program Counter value and can now type in a new value. The value takes effect after you hit Enter.

The Processor Flags can be toggled by clicking on the individual letters. For example, if you click the “C” letter

it will toggle between Carry Set and Carry Clear.

Viewing and changing memory

The Memory Pane can be used to view the contents of memory, and to modify memory. There are two Memory

Panes, which can be enabled through the “View” menu > “Debugging” > “Memory 1” and “Memory 2”.

The Memory Pane displays the hexadecimal contents of the selected memory area on the left, and displays an

ASCII decoding of those values on the right. High bits are ignored when decoding ASCII, as is the standard for

the Apple II.

The Address edit at the top of the pane can be used to jump to a specific location in memory. For example, typing

“04/1234” will jump to the address 04/1234.

The Memory Pane will update in real-time. As memory values change, they will be displayed.

You can edit memory values by clicking on a hexadecimal value and then typing a new hexadecimal value. The

cursor will move as you type, so you can enter in as many bytes as you want.

If you prefer to edit using ASCII values then you can click on the ASCII values on the right-hand side and type

replacement values – e.g. typing the letter ‘A’ on the keyboard will store the hexadecimal value 41 into memory.

Just like the hexadecimal edits, the cursor will move within the ASCII section of the pane as you type, so you can

enter in as many ASCII characters as you want.

By default, the memory pane will adjust the number of columns it displays to fill the width of the pane. Sometimes

it is easier to deal with memory with fixed widths. You can use the Columns drop down to specify a fixed number

of columns. In the example below, we have set the Column count to 16, and therefore the memory pane has nicely

aligned addresses of 0000, 0010, 0020, and so on.

There are three toolbar buttons on the top-right of the memory pane:

• Search memory

• Load memory from disk

• Save memory to disk

Search Memory
Clicking the Search Memory button will bring up a dialog which allows you to search the contents of main

memory for the specified sequence of bytes, a specified string, or for memory that matches a regular expression.

The search can, optionally, be restricted to a given address range. If the Start Address is populated then the search

will begin starting at the specified address. If the End Address is populated then the search will terminate at the

specified address. If neither address is specified then the entire contents of memory will be searched.

If you search for a sequence of bytes then you must enter the hexadecimal byte values into the search field. You

can separate bytes using whitespace, but this is not required. The ‘?’ character can be used as a wildcard.

For example, “11 2? ?3 ?? 44” will search for “11” followed by any byte with a high nibble of ‘2’, followed by

any byte with a low nibble of ‘3’, followed by any byte, followed by “44”.

If you search for a string then a case sensitive search of memory is performed. The high bit is ignored when

performing string searches.

Search results are displayed in a list on the left-hand side of the window. If there are over 1000 matches then the

search will terminate after the 1000th match. You can click on each address in the search results to see a preview

of the memory at that address.

Load Memory
Clicking the Load Memory button will bring up a dialog which allows you to specify the file to load into memory

and the address where the file’s contents should be stored.

Firstly, either enter the filename of the file to load, or alternatively click on the “…” button to select the file.

Next, select which memory area the file should be loaded into – the computer’s main memory, the 64KB of sound

RAM used by the Ensoniq, or the 96 bytes of memory used by the ADB microcontroller.

Next, enter the starting address in memory where the file should be loaded.

The final field contains the length of data to be stored. By default, this will be the length of the file being loaded,

but this can be edited to reduce the number of bytes being loaded.

The length field is treated as a decimal number, unless you prefix the length with the dollar sign (‘$’). For example,

“1234” is 1234 bytes while “$1234” is 4660 bytes.

Save Memory
Clicking the Save Memory button will bring up a dialog which allows you to specify a file on disk where memory

will be written to.

Firstly, either enter the filename of the file to save to, or alternatively click on the “…” button to select a file.

Next, select which memory area should be saved.

Next, select the starting address in memory which will be written to the file.

The final field contains the number of bytes to be written to the file.

Setting breakpoints

There are two main ways of setting breakpoints.

Firstly, you can select a line in either the disassembly view, or in the source code view, and press F9 on the

keyboard to toggle a breakpoint at that address. The “Toggle breakpoint” option is also available in the popup

menu that is presented if you right-click on a line in either of these views.

Secondly, you can use the Breakpoints Pane to create more complex breakpoints. The Breakpoints Pane can be

enabled through the “View” menu > “Debugging” > “Breakpoints”.

In the Breakpoints Pane it will display a list of all active breakpoints. Click the “New” button in the top left of the

pane to bring up the “New Breakpoint” dialog.

There are a number of different conditions that can be specified using this dialog. You can specify a single

condition, or you can specify a combination of conditions. All conditions must be met for the breakpoint to be

triggered.

Break on Program Counter
The “Break on Program Counter” option creates a breakpoint that will trigger when the Program Counter (PC)

register in the CPU is set to a specific value (before executing code at that address), or alternatively when the PC

is within a specific address range.

If you specify a 16 bit address (for example, “1234”) then the breakpoint will be triggered on any bank. So

regardless of whether we are running in bank 00 at address 1234, or if we are running in bank 04 at address 1234,

it will trigger.

If you specify a 24 bit address (for example, “04/1234”) then the breakpoint will only be triggered for that specific

bank and address.

Break after read/write
The “Break after read/write” option creates a breakpoint that will trigger when memory is accessed at a specific

address, or when memory is accessed from a specified address range. Unlike the “Break on Program Counter”

option, this breakpoint triggers after the code that has performed a read and/or write.

You must at a minimum tick either “Break after read” or “Break after write”. You can tick both if you want. By

ticking both, it will break after either a read or a write to the address.

The final checkbox (“Break only if value read/written is”) can restrict this breakpoint further. If this option is

checked then the breakpoint will only trigger if memory was accessed at the specified address and the value that

was read from that address, or written to that address, meets specific additional criteria.

You can specify that the address that is read/written must be equal to a given value, not equal to a given value, or

less than or greater than a given value. The value that you specify can be either an 8-bit value, or a 16-bit value.

Break on register value
The “Break on register value” option creates a breakpoint that will trigger only when one or more registers have

values that meet specified criteria.

The leftmost drop down picks the register that you want to test. The middle drop down picks the comparison type

(the register must equal the specified value, must be different from the specified value, or must be less than or

greater than the specified value). The rightmost drop down picks the value that the register will be compared

against. The value that you specify can be either an 8-bit value, or a 16-bit value.

You can click the “+” button to add additional register conditions. All register conditions must be met for the

breakpoint to trigger.

If you want to remove a register condition, then click the “X” button on the right of the register condition you

wish to delete.

“Break on register value” conditions are often combined with “Break on Program Counter” conditions. In this

case, the breakpoint will only trigger if the PC is at the specified address and the registers hold the specified values

at that point in time.

Break on BRK
The “Break on BRK” option will create a breakpoint that will trigger when a BRK opcode is encountered.

Break on Interrupt
The “Break on Interrupt” option will create a breakpoint that will trigger when an interrupt is triggered.

Deleting breakpoints

Breakpoints can be deleted in the Breakpoints Pane. Select the breakpoint you want to delete and then either press

the Delete key, or click on the “Delete breakpoint” button in the toolbar.

Memory Map

The Apple II series of computer, like other computers that began life with a 64K address space, has a configurable

memory map. Selected ranges of memory can be swapped between main memory, auxiliary memory, language

card banks, I/O space and ROM. Selected ranges can even be configured to be asymmetric – i.e. reads access

different memory to writes. This allows an Apple II+ to access 64K of RAM and 12K of ROM. The Apple IIe

builds on this in order to access 128K of RAM and 12K of ROM.

The Apple IIGS takes this one step further by having 128K of fast RAM (bank 0 and bank 1) and 128K of slow

RAM (bank E0 and bank E1), with all of the same configurable memory map options across all 4 banks plus a

few new features – for example:

• The $C000-$CFFF I/O space can be replaced by RAM.

• Reverse mapping can happen – so auxiliary memory can be remapped to main memory.

• Memory can be “shadowed” – so that a write to bank 0 will also result in a write to bank E0 and/or a

write to bank 1 will result in a write to bank E1.

All of this can make it non-trivial to determine what memory map is active when you break CPU execution at a

random point in time. The Memory Map pane aims to give you a way to view the entire mapping quickly in a

glance.

The Memory Map pane can be displayed through the “View” menu > “Debugging” > “Memory Map”.

The four banks are shown as 4 rows. Each row is divided into a series of chunks from $0000 to $FFFF. Each

chunk will be colour coded to indicate its current mapping.

For example, the first chunk of memory is $0000-$0200, which is the zero page and stack space. This chunk can

be switched between main memory and aux memory using the SETALTZP ($C009) softswitch. If this chunk is

Green it indicates that the chunk is mapped to main memory. If the chunk is Magenta it indicates that the chunk

is mapped to auxiliary memory.

Shadowing is indicated by an arrow from a chunk of memory in Bank 00 to Bank E0, or from Bank 01 to Bank

E1. If there is no arrow then it indicates that Shadowing has been disabled for that chunk of memory.

In the example above, there are two chunks of memory that are being shadowed – Text Page 1 ($0400-$07FF) in

main memory and the same chunk in auxiliary memory. Any writes to address range $0400-$07FF in bank 00

will be shadowed to address range $0400-$07FF in bank E0, and any writes to address range $0400-$07FF in

bank 01 will be shadowed to address range $0400-$07FF in bank E1.

When a chunk of memory is configured differently for reads and writes it is displayed as a split chunk. The top

half of the chunk indicates where reads will be mapped to, and the bottom half of the chunk indicates where writes

will be mapped to.

In the example, above the top half of the chunk is coloured grey indicating that reads will come from ROM. The

bottom half of the chunk is coloured green indicating that writes will be mapped to RAM.

In this particular example, the memory space is $D000-$DFFF which can be mapped to two different areas in

RAM - Language Card Bank 1 or Language Card Bank 2. The chunk is therefore labelled to indicate which

Language Card Bank is current mapped.

Debugging High Level Languages

Crossrunner also supports a higher level debugging mode for languages such as ORCA/C and ORCA/Pascal. In

this mode you debug using the C or Pascal source code, and step through it line-by-line rather than instruction-

by-instruction.

You can at any time switch between the high-level mode and the disassembly-level mode. Simply right-click on

a line of C/Pascal and select “Go To Disassembly”. This will switch to the disassembly-level mode and highlight

the first instruction that corresponds to that line of C/Pascal. For each line of C/Pascal there will be many assembly

language instructions.

You can also go in the opposite direction. Simply right-click on a line containing C/Pascal source code, and select

“Go To Source”. This will switch to the source-level mode and highlight the line of C/Pascal source code that

begins with that COP instruction.

Chapter 4

Shell

The Shell pane will be familiar to anyone who has used ORCA/Shell. The Shell pane can be opened through the

“View” menu > “Shell”.

There are two main uses for the Shell:

1. To be able to build existing software that relied on ORCA/Shell build scripts.

2. Reducing the time to perform certain disk image management tasks.

Getting Help on commands
The first command you should familiar yourself with is the HELP command. Typing HELP by itself will list all

commands available within the shell. You can then type HELP <command> to get more detailed help on a

particular command.

Mounting disk images
The next command that you should familiarise yourself with is the MOUNT command, which is a new command

not found in ORCA/Shell. The MOUNT command allows you to mount disk images. Typing MOUNT

<filename> will mount the specified disk image. For example, if you have a ProDOS disk image called

“Source.2MG” which contains the ProDOS volume SOURCE, you can type “MOUNT Source.2MG” to mount

the volume :SOURCE.

The Shell lets you mix and match between the native filesystem (e.g. Windows filesystem), ProDOS filesystems

and DOS 3.3 filesystems. The Windows filesystem can be referred to using GS/OS pathnames, which are colon

separated. For example, “C:\Windows\filename” would be referenced using “:C:Windows:filename”.

This mixing and matching means that you can use the ORCA/Shell COPY command to copy files from the native

filesystem to a disk image, from a disk image to the native filesystem or from a disk image to another disk image.

It allows you to run Apple IIGS command line utilities and redirect the output to a file on the native filesystem. It

allows you to run a native (e.g. Windows) command line utility and redirect the output to a file on a ProDOS disk

image.

If you want to unmount a disk image, then you can type UNMOUNT <volume>.

Wildcards
The Shell support ORCA/Shell wildcards. The ‘=’ character is a wildcard that matches zero or more characters.

Because the Shell allows wildcards, this can make certain bulk tasks like changing the filetype and auxtype of a

large number of files achievable in less time than other tools (such as Ciderpress).

Command history
You can use the up and down arrow keys to up through your command history. This makes it easier to reissue

commands you have previously typed.

You can also use the HISTORY command to display the last 20 commands that were executed.

Filename completion
The Shell supports filename completion using the tab key. This allows you to type the first few letters of a filename

and then press ‘tab’ to complete the filename, saving you some typing. If there are multiple possible matches for

the completion then you can keep pressing the tab key to cycle through the options.

Prefixes
The Shell supports GS/OS prefixes. The ORCA compilers and linkers use these GS/OS prefixes to specify the

location for supporting files that they rely on.

Prefixes can be very useful to standardise on directory structures, and to save you keystrokes. For example, to

open up the C header “limits.h”, you can type EDIT 13:ORCACDefs:limits.h.

Prefix Description Default value

@ User’s folder Native filesystem documents directory

* Boot prefix Native filesystem boot directory (e.g. :C:)

8 Current prefix Native filesystem current working directory

9 Application Native filesystem directory of the Crossrunner application

10 Standard Input .CONSOLE

11 Standard Output .CONSOLE

12 Error Output .CONSOLE

13 ORCA library Configured under “Libraries Path” in the Preferences dialog

14 ORCA work The parent directory of 16:

15 ORCA shell Configured under “Shell Path” in the Preferences dialog

16 ORCA language Configured under “Languages Path” in the Preferences dialog

17 ORCA utility Configured under “Utilities Path” in the Preferences dialog

You can use the SHOW PREFIX command to display all prefix values that are set.

You can use the PREFIX <number> <directory> command to change the prefix assigned to a given

number.

Device Numbers
The Shell supports GS/OS device numbers. Every volume, whether it is a native volume or a disk image, is

assigned a volume number. You can get a list of all device numbers by typing the command SHOW UNITS.

Similar to prefixes, device number can be used in any command, for example EDIT .d5:filename.

Chapter 5

Merlin and ORCA Integration

Crossrunner allows you to debug programs you have written using either the Merlin assembler (Merlin-32) or

using the ORCA suite of compilers and assemblers (ORCA/M, ORCA/C and ORCA/Pascal).

Using this feature you will be able to see your source code inside Crossrunner, complete with all labels, variable

names and comments. This makes it a lot easier to debug than just using the standard disassembly output.

❖ Merlin-32 is a command line assembler that is available (for free) on Windows, MacOS and Linux. It is

a modern version of the popular Apple II Merlin 16+ assembler originally by Glen Bredon.

Merlin-32 v1.0 can be downloaded at

http://www.brutaldeluxe.fr/products/crossdevtools/merlin/index.html

Later versions of Merlin-32 can be downloaded at https://github.com/apple2accumulator/merlin32

❖ ORCA/M, ORCA/C and ORCA/Pascal are still commercial products.

They can be purchased as part of the “Opus][: The Software” collection from https://juiced.gs/store/opus-

ii-software/

Merlin-32

Compiling
When compiling using Merlin-32 you must specify the “-V” (verbose) build switch. This will cause Merlin-32 to

generate the xxx_Output.txt files which Crossrunner uses.

For example:

Merlin32 -V App.s

Running
You can now run your program using Crossrunner. You must use the following command line switches:

1. The filename for your program

2. -source, followed by all assembler outputs

3. -map, followed by the Master source file (or the Link file)

4. -Debug

5. -CompatibilityLayer

In the example above, Merlin32 has output the following files:

• GTEZelda_S02_MAINSEG_Output.txt

• GTEZelda_S03__Output.txt

• GTEZelda_S04__Output.txt

• GTEZelda_S05__Output.txt

• GTEZelda_S06__Output.txt

• GTEZelda_S07__Output.txt

And it has generated an executable called:

• GTEZelda

http://www.brutaldeluxe.fr/products/crossdevtools/merlin/index.html
https://github.com/apple2accumulator/merlin32
https://juiced.gs/store/opus-ii-software/
https://juiced.gs/store/opus-ii-software/

Therefore our command line would be:

Crossrunner.exe GTEZelda -source GTEZelda_S02_MAINSEG_Output.txt

GTEZelda_S03__Output.txt GTEZelda_S04__Output.txt GTEZelda_S05__Output.txt

GTEZelda_S06__Output.txt GTEZelda_S07__Output.txt -map App.s -Debug -

CompatibilityLayer

ORCA/M

Compiling
When compiling using ORCA/M you must use the +L +S switches, and you must redirect the output to a file.

For example (using Golden Gate):

iix assemble +L +S game.asm keep=obj:game > out\game.asm

Using Crossrunner’s Shell:

assemble +L +S game.asm keep=obj:game > out\game.asm

Using Crossrunner’s standalone Compile command line utility:

compile +L +S game.asm keep=obj:game > out\game.asm

❖ Golden Gate is a compatibility layer for ORCA and GNO/ME command line programs to allow you to

run them natively from Windows, MacOS or Linux.

Linking
Next, you must specify the +L switch when linking, and you must redirect the output to a file.

For example (using Golden Gate):

iix link +L obj:game keep=mygame > out\game.map

Using Crossrunner’s Shell or Crossrunner’s standalone Link command line utility:

link +L obj:game keep=mygame > out\game.map

Running
You can now run your program using Crossrunner. You must use the following command line switches:

1. The filename for your program

2. -source, followed by all assembler outputs

3. -map, followed by the linker output

4. -Debug

5. -CompatibilityLayer

Continuing the examples above (under Compiling and Linking) this would result in the following command line:

Crossrunner.exe MYGAME -source out\game.asm -map out\game.map -Debug

-CompatibilityLayer

An example with more source code files would look like:

Crossrunner.exe MYPROGRAM -source out\file1.asm out\file2.asm

out\file3.asm -map out\program.map -Debug -CompatibilityLayer

ORCA/C and ORCA/Pascal

Compiling
When compiling using ORCA/C or ORCA/Pascal you must use the +D switch.

For example (using Golden Gate):

iix compile +D game.cc keep=obj:game

Using Crossrunner’s Shell or Crossrunner’s standalone Compile command line utility:

compile +D game.cc keep=obj:game

Linking
Next, you must specify the +L switch when linking, and you must redirect the output to a file.

For example (using Golden Gate):

iix link +L obj:game keep=mygame > out\game.map

Using Crossrunner’s Shell or Crossrunner’s standalone Link command line utility:

link +L obj:game keep=mygame > out\game.map

Running
You can now run your program using Crossrunner. You must use the following command line switches:

1. The filename for your program

2. -source, followed by all C source code files

3. -map, followed by the linker output

4. -DebugSource

5. -CompatibilityLayer

Continuing the examples above (under Compiling and Linking) this would result in the following command line:

Crossrunner.exe MYGAME -source game.cc -map out\game.map -DebugSource

-CompatibilityLayer

An example with more source code files would look like:

Crossrunner.exe MYPROGRAM -source file1.cc file2.cc file3.cc -map

out\program.map -DebugSource -CompatibilityLayer

Chapter 6

Scripting

Crossrunner has a built-in scripting engine that allows you to hook into the emulator in order to add custom actions

or to leverage core functionality to perform tasks.

The scripting engine uses Wren for the scripting language. The Wren website (http://wren.io) has an introductory

guide to the scripting language if you are not familiar with it.

After you type in a script into the Script pane, you need to click the “Run Script” button in the toolbar of the Script

pane to execute the script. If your script is a simple, linear, script – for example:

System.print(1 + 1)

then the script will finish immediately and output the result immediately. After running this script you can click

the “Stop” button in the toolbar, but this does not impact the script as the script has already finished all its

processing.

However, as we will discuss later (under “Handling Events”) you will need to leave scripts that install event

handlers in a “Running” state in order for them to receive events.

Accessing the Emulator State

CPU Registers
In order to access the CPU state, the built-in Register class can be used. This class has the following fields:

• A – 16 bit accumulator. Note that this will always return both the A and B accumulator values as a single

16 bit result regardless of whether emulation mode is enabled, or whether the processor flags are set to

8 bit or 16 bit.

• A8 – 8 bit accumulator. Note that this will always return only the A accumulator (low 8 bits) regardless

of whether emulation mode is enabled, or whether the processor flags are set to 8 bit or 16 bit.

• X – X register.

• Y – Y register.

• PC – the Program Counter

• SP – the Stack Pointer

• P – the processor flags

• DP – the Direct Page register

• K – the Program Bank Register. This can also be accessed through the PBR alias.

• DBR – the Data Bank Register.

• emulationMode – a Bool value that will be true if emulation mode is enabled.

All of these fields support both reading the current values of the register, as well as modifying the current value

of the register.

An example of using the Register class is shown below:

if (Register.PC == 0x1234) {

 Register.X = Register.Y

}

In the example above, the Program Counter is tested to see if it is at address 1234 (in hexadecimal). If it is, then

the X register is set to be the value contained in the Y register.

Video Graphics Controller state
In order to access the Video Graphics Controller (VGC) state, the built-in Video class can be used. This class

has the following fields:

http://wren.io/

• scanline – the current scanline that the electron beam is on. This will be a value between 0 and 199

when the beam is scanning the standard screen area. The value will be negative if the beam is scanning

the border region above the screen area, and will be >= 200 when scanning the border region below the

screen area.

• horizCounter – the horizontal video counter. This is the same as the 7-bit value held in the $C02F

softswitch.

• vertCounter – the vertical video counter. This is the same as the 9-bit value held in the $C02E and

$C02F softswitches.

All of these fields are read only.

Accessing memory
The Apple IIGS has three distinct areas of memory – main memory, sound (Ensoniq DOC) RAM, and the memory

within the ADB microcontroller.

The Memory class is used to read/write main memory. The SoundRAM class is used to read/write to sound RAM.

And finally, the ADBMemory class is used to read/write to the M50740/M50741 microcontroller’s memory.

An example of reading and writing to memory is shown below:

// copy a byte from address 00/4000 to address 00/2000

Memory[0x2000] = Memory[0x4000]

// set the first byte in Sound RAM to the hexadecimal value 12

SoundRAM[0x0000] = 0x12

Accessing softswitches
The Softswitch class can be used to read softswitches. The following table lists the field names, and the I/O

address that it corresponds to. For example, Softswitch.KBD is equivalent to reading softswitch $C000.

All softswitches are read-only and have no side effects. For example, Softswitch.KBDSTRB will return the

“Any Key Down” flag and key information, but it will not clear the keystrobe.

KBD $C000 SLTROMSEL $C02D

KBDSTRB $C010 VERTCNT $C02E

RDLCBNK2 $C011 HORIZCNT $C02F

RDLCRAM $C012 DISKREG $C031

RDRAMRD $C013 CLOCKDATA $C033

RDRAMWRT $C014 CLOCKCTL $C034

RDCXROM $C015 SHADOW $C035

RDALTZP $C016 CYAREG $C036

RDC3ROM $C017 DMAREG $C037

RD80COL $C018 SOUNDCTL $C03C

RDVBLBAR $C019 SOUNDDATA $C03D

RDTEXT $C01A SOUNDADRL $C03E

RDMIX $C01B SOUNDADRH $C03F

RDPAGE2 $C01C INTEN $C041

RDHIRES $C01D DIAGTYPE $C046

ALTCHARSET $C01E BUTN3 $C060

RD80VID $C01F BUTN0 $C061

TBCOLOR $C022 BUTN1 $C062

VGCINT $C023 BUTN2 $C063

MOUSEDATA $C024 PADDL0 $C064

KEYMODREG $C025 PADDL1 $C065

DATAREG $C026 PADDL2 $C066

KMSTATUS $C027 PADDL3 $C067

NEWVIDEO $C029 STATEREG $C068

LANGSEL $C02B

Changing the emulator state
Currently the only operation that is available is to change the emulator from a halted state to a running state. This

is accomplished with the following code:

Emulator.run()

This is useful when combined with an onBreakpoint event handler. This allows you to react to the breakpoint

and then either conditionally break or continue running.

Examining the CPU instruction history

Crossrunner keeps track of the last 1,000,000 CPU instructions that were executed. You can use the History

class to examine this data. The class has the following operators, methods and fields:

• History[index] – the index operator allows you to access the previous CPU instructions. An index

value of 0 will return the last CPU instruction that was executed, while an index value of 999,999 will

access the instruction that was executed 999,999 instructions previously. You can only read from the

CPU instruction history – you cannot modify previous instructions.

• size – this field will return the total number of instructions available in the history. After you have been

running for a short period this will max out at 1,000,000 instructions, but shortly after boot this field will

be a smaller value right until the point when the history buffer reaches its limit (at which point older

instructions will be replaced with newer instructions).

• markedEntry – this field is both readable and writeable. This allows you to place a marker within the

instruction history, and then to later read the offset where that marker has moved to. Because the

instruction history changes as new instructions are issued this is useful, for example, to mark the point

where you have processed up to. Then, later on, you can continue processing from that point onwards.

When using the index operator to access a historical entry, the following fields can be read:

• A – 16 bit accumulator. Note that this will always return both the A and B accumulator values as a single

16 bit result regardless of whether emulation mode was enabled, or whether the processor flags were set

to 8 bit or 16 bit.

• X – X register.

• Y – Y register.

• PC – the Program Counter

• SP – the Stack Pointer

• P – the processor flags

• DP – the Direct Page register

• K – the Program Bank Register. This can also be accessed through the PBR alias.

• DBR – the Data Bank Register.

• emulationMode – a Bool value that will be true if emulation mode was enabled.

• Q – the Quagmire pseudo-register

• RDLCBNK2 – the RDLCBNK2 softswitch ($C011)

• RDLCRAM – the RDLCRAM softswitch ($C012)

• RDRAMRD – the RDRAMRD softswitch ($C013)

• RDRAMWRT – the RDRAMWRT softswitch ($C014)

• RDCXROM – the RDCXROM softswitch ($C015)

• RDALTZP – the RDALTZP softswitch ($C016)

• SHADOW – the Shadow Register ($C035)

• STATEREG – the State Register ($C068)

• bytes – a raw byte array containing the CPU opcode and operand.

• cycles – the number of 65816 cycles the instruction takes to issue – irrespective of clock speeds.

• opcode – a string containing the opcode name.

• operand – a string containing the operand, if any, for the instruction.

• instruction – a string representing the full instruction (opcode + operand).

• horizCounter – the horizontal video counter. This is the same as the 7-bit value held in the $C02F

softswitch.

• vertCounter – the vertical video counter. This is the same as the 9-bit value held in the $C02E and

$C02F softswitches.

• timestamp – time since the machine started (measured in 1 MHz cycles)

• timestampFixed – same as timestamp but padded to an output width of 17 characters if necessary

In addition to these fields there is a useful, and performant, shortcut for building a custom string from the fields:

• formatString(string) – this will generate a string with any embedded keywords replaced with

their actual values (in hexadecimal). Embedded keywords are specified within braces.

An example of formatString would be:

History[i].formatString("{K}/{PC} - A={A}, X={X}, Y={Y}"

Putting this all together, here is a simple script that will display the last 20 instructions that were executed. It will

output the result to the Script Log. Note that the for loop iterates from 19 down to 0, rather than the other way

around. This is because we want this script to display the oldest instruction first and the newest instruction last.

for (i in 19..0) {

 System.print(History[i].formatString(

 "{K}/{PC} - A={A}, X={X}, Y={Y} - {instruction}"))

}

Handling Events

If your script contains an EventHandler class then Crossrunner will callback into your class when certain

events happen. A skeleton for handling different events is shown below:

class EventHandler {

 static onBreakpoint() {

 }

 static onFrameComplete() {

 }

}

onBreakpoint will be called whenever a breakpoint is triggered in the emulator.

onFrameComplete will be called 60 times a second, at the completion of each video frame. A frame is

complete when all visible scanlines have been displayed – this includes the scanlines in the border region.

Adding overlays on top of the display area

The Overlay class can be used to overlay rectangles and text over the screen area. The uses for this are limitless

– such as exposing internal game variables for all to see, highlighting hit boxes for characters in a game, or

displaying the number of frames per second that a game engine is outputting.

This class has the following methods:

• drawRectangle(x, y, width, height, color) – draws a rectangle at the specified

coordinates with the specified width/height. The outline of the rectangle is drawn using the specified

colour.

• fillRectangle(x, y, width, height, color) – this is similar to drawRectangle, but this

method instead fills the rectangle with the specified colour.

• drawLine(startX, startY, endX, endY, color) – draws a line from the specified starting

point to the specified end point using the specified colour.

• drawText(x, y, color, text) – draws a string of text using the specified colour at the given

coordinates.

When specifying color, you can either use one of the predefined names (Color.Black, Color.White,

Color.Red, Color.Green, Color.Blue, Color.Yellow, Color.Magenta, Color.Aqua,

Color.Lime, Color.Orange) or you can specify a custom colour using Color.new(r, g, b, a)

where you specify the red, green, blue and alpha channel values using a number between 0 and 1. For example,

Color.new(1,0.65,0,1) will generate the same shade of orange as the built-in Color.Orange.

The Overlay class also has the following field:

• coordinateSystem – this field is by default Coordinates.Native, which means that any

coordinates specified for drawing rectangles and lines are specified using the host system’s resolution

and are relating to the top-left corner of the pane.

You can set this field to, for example, Coordinates.Apple280 which allows you to specify

coordinates where 0, 0 will be the top left of the Hires screen and 279, 191 will be the bottom left of the

Hires screen. Other options include Coordinates.Apple140, Coordinates.Apple320,

Coordinates.Apple560 and Coordinates.Apple640.

The example below adds an overlay over the game Rescue Raiders, showing internal game variables for the

computer AI.

class EventHandler {

 static onFrameComplete() {

 var fuel = Memory[0x6108]

 var missiles = Memory[0x6102]

 Overlay.fillRectangle(10,10,200,60,Color.Red)

 Overlay.drawText(15,15,Color.Black,"Enemy fuel: %(fuel)")

 Overlay.drawText(15,30,Color.Black,"Enemy missiles: %(missiles)")

 }

}

The series Behind the Code on the YouTube channel Displaced Gamers shows many examples of this type of

emulator scripting technique for a variety of popular Nintendo games.

Reading and Writing to disk

Opening a file and then either creating or writing to it involves the use of two classes. Firstly, the Filesystem

class is used to identify the filesystem which will be used – which may be your computer’s native filesystem, or

it may be a ProDOS filesystem within a disk image.

The constructor for filesystem requires a pathname – which either identifies a folder on your hard drive which

becomes the base path for all file actions, or specifies the full pathname of a disk image file. For example, the

following code specifies that the native filesystem should be used:

var fs = Filesystem.new(“C:\\myfolder”)

Whereas the following code specifies that a disk image should be used:

var fs = Filesystem.new(“C:\\myimage.2mg”)

The Filesystem class has the following methods:

• create(path, filetype, auxtype) – this will create a new file on the filesystem using the

specified relative pathname and with the given ProDOS filetype and auxtype. When using the native

filesystem the filetype and auxtype are encoded using the Ciderpress convention of #FFAAAA.

• createFolder(path) – this will create a new folder on the filesystem using the specified relative

pathname.

• delete(path) – this will delete the file at the specified location.

• rename(path, newFilename) – this will rename the file at the specified location to the new

filename that was specified.

• getFileInfo(path, fileInfo) – this will return information about the specified file into the

specified FileInfo instance.

• setFileInfo(path, fileInfo) – this will update the file’s attributes to match the attributes

contained in the FileInfo instance.

The Filesystem class also has the following fields:

• blocksFree – returns the number of free blocks on the filesystem.

• blocksUsed – returns the number of blocks that are in use on the filesystem.

• totalBlocks – returns the total number of blocks on the filesystem.

• volumeName – returns the ProDOS volume name of the filesystem.

The FileInfo class has the following fields:

• accessType – the access permissions for the file. This is either AccessType.NoAccess,

AccessType.ReadOnly, AccessType.WriteOnly or AccessType.ReadAndWrite.

• isVisible – true if the file is visible.

• backupNeeded – true if the backup needed flag is set for the file.

• renameAllowed – true if the file is permitted to be renamed.

• destroyAllowed – true if the file is permitted to be deleted.

• fileType – the ProDOS filetype of the file.

• auxType – the ProDOS auxtype of the file.

• storageType – returns the storage type of the file. This is either StorageType.File,

StorageType.ExtendedFile or StorageFile.Directory.

• endOfFile –the end-of-file marker for the file, or for the data fork within the file.

• blocksUsed – returns the number of blocks used for the file, or for the data fork within the file.

• resourceEndOfFile – the end-of-file marker for the resource fork within the file.

• resourceBlocksUsed – returns the number of blocks used for the resource fork within the file.

There are a number of built-in filetype enumerations that can be used when creating files, and comparing the

filetype returned by getFileInfo against. These are Filetype.TXT, Filetype.BIN, Filetype.SRC,

Filetype.S16, Filetype.PNT, Filetype.PIC, Filetype.ANI, Filetype.SND and

Filetype.SYS.

Once an instance of the Filesystem class has been created and, if writing, an empty file has been created on

that filesystem we can now construct an instance of the File class. The constructor takes the filesystem as the

first parameter, and the pathname within that filesystem as the second parameter. For example:

var f = File.new(fs, “output.log”)

If fs in the example above uses the native filesystem with a base path of “C:\myfolder” then the file referenced

will have a path of “C:\myfolder\output.log”. However, if fs in the example above uses a disk image then the

file referenced will be in the root directory of that disk image.

If you wish to open the resource fork of a file then you need to use the constructor that accepts the fork type as

the third parameter. For example:

var f = File.new(fs, “:MYFOLDER:myfile”, Fork.Resource)

Pathnames must be specified using the GS/OS convention of colon separators.

The File class has the following methods:

• read(numberOfBytes) – this will attempt to read the specified number of bytes. It will return a

byte array containing the data that was read.

• write(data) – this will attempt to write the specified data to the file.

• getDirectoryEntry(offset, directoryEntry) – this will return information about the

directory entry contained at the specified offset. This will only work if the file that was opened was a

directory. This method will return true if there is an entry at the specified offset, and false when it

reaches the end of the directory.

The DirectoryEntry class has the same fields as the FileInfo class, plus two additional fields:

• filename – returns the filename for the directory entry.

• entryOffset – returns the offset of the filename within the directory.

Saving and restoring snapshots

The Snapshot class can be used to save a snapshot of the current emulator state to disk, and to also restore the

emulator state from disk. The class has the following methods:

• load(file) – this will load the snapshot from the specified file. The file can be either an instance of

the File class, or it can be a String containing the pathname of the snapshot on the native filesystem.

• save(file) – this will save a snapshot of the emulator state to specified file. The file can be either an

instance of the File class, or it can be a String containing the pathname of the snapshot on the native

filesystem.

Examples

Logging every instruction to a file on disk
The following script installs an event handler that will log every CPU instruction executed to a file on disk:

class Logger {

 construct new() {

 _fs = Filesystem.new("C:\\")

 _fs.create("output.log",Filetype.TXT,0)

 _f = File.new(_fs, "output.log")

 }

 logHistory() {

 var end = History.size - 1

 if (History.markedEntry != -1) {

 end = History.markedEntry - 1

 }

 for (i in end..0) {

 _f.write(History[i].formatString(

 "{K}/{PC} - A={A}, X={X}, Y={Y} - {instruction}\n"))

 }

 History.markedEntry = 0

 }

}

class EventHandler {

 static init() {

 __logger = Logger.new()

 }

 static onFrameComplete() {

 __logger.logHistory()

 }

 static onBreakpoint() {

 }

}

EventHandler.init()

Listing the contents of a ProDOS disk image
The following script will open a disk image and list the filenames contained in the root directory:

var fs = Filesystem.new("C:\\Emulation\\emutest.po")

var f = File.new(fs, ":%(fs.volumeName):")

var di = DirectoryEntry.new()

var offset = 0

while (f.getDirectoryEntry(offset,di)) {

 System.print(di.filename)

 offset = offset + 1

}

Printing out Applesoft statements as they run
The following script will print out Applesoft statements as they are executed. Note that it requires a breakpoint to

be set at address $D7D2 in order to work.

class EventHandler {

 static init() {

 __tokens = [

 "END", "FOR", "NEXT", "DATA", "INPUT", "DEL",

 "DIM", "READ", "GR", "TEXT", "PR#", "IN#",

 "CALL", "PLOT", "HLIN", "VLIN", "HGR2", "HGR",

 "HCOLOR=", "HPLOT", "DRAW", "XDRAW", "HTAB", "HOME",

 "ROT=", "SCALE=", "SHLOAD", "TRACE", "NOTRACE", "NORMAL",

 "INVERSE", "FLASH", "COLOR=", "POP", "VTAB", "HIMEM:",

 "LOMEM:", "ONERR", "RESUME", "RECALL", "STORE", "SPEED=",

 "LET", "GOTO", "RUN", "IF", "RESTORE", "&",

 "GOSUB", "RETURN", "REM", "STOP", "ON", "WAIT",

 "LOAD", "SAVE", "DEF", "POKE", "PRINT", "CONT",

 "LIST", "CLEAR", "GET", "NEW", "TAB", "TO",

 "FN", "SPC(", "THEN", "AT", "NOT", "STEP",

 "+", "-", "*", "/", "^", "AND",

 "OR", ">", "=", "<", "SGN", "INT",

 "ABS", "USR", "FRE", "SCRN", "PDL", "POS",

 "SQR", "RND", "LOG", "EXP", "COS", "SIN",

 "TAN", "ATN", "PEEK", "LEN", "STR$", "VAL",

 "ASC", "CHR$", "LEFT$", "RIGHT$", "MID$"]

 }

 static onFrameComplete() {

 }

 static buildLine(i) {

 var line = ""

 var inQuote = false

 while (Memory[i] != 0) {

 var b = Memory[i]

 if ((b == 0x3A) && !inQuote) break

 if (b == 0x22) inQuote = !inQuote

 if (b < 0x80) {

 line = line + String.fromByte(b)

 } else {

 line = line + " " + __tokens[b-0x80] + " "

 }

 i = i + 1

 if (i == 255) return "error"

 }

 return line

 }

 static onBreakpoint() {

 var address = Memory[0xB8] + (Memory[0xB9] << 8)

 if (Memory[address] == 0x3A) {

 var line = " %(buildLine(address + 1))"

 System.print("%(Hex.Str16(address)) - %(line)")

 } else {

 var lineNumber = Memory[address + 3] + (Memory[address + 4] << 8)

 var line = "%(lineNumber) %(buildLine(address + 5))"

 System.print("%(Hex.Str16(address)) - %(line)")

 }

 Emulator.run()

 }

}

EventHandler.init()

Chapter 7

Command Line arguments

Crossrunner optionally supports command line arguments. If no command line arguments are specified then

Crossrunner will start in Library mode – which is the mode where it presents you with a user interface to select a

System or Disk Image to boot. If command line arguments are specified then their usage is as follows:

Crossrunner.exe [-ROM01 | -ROM03 | -Snapshot <filename>]

[-Speed=<speed>] [-Debug | -DebugSource] [-CompatibilityLayer]

[-Source <filename 1> … <filename n>]

[-Map <filename>]

<filename>

The switches have the following behaviour:

-ROM01 Emulate a ROM01 machine
-ROM03 Emulate a ROM03 machine
-Snapshot <filename> Initialise the starting machine state from the specified file. The

ROM01/ROM03 switches are ignored if a snapshot is specified.
-Speed=<speed> Set the machine speed – valid options are:

• Slow – 1 MHz operation

• Normal – 2.8 MHz operation

• Fast – 7 MHz operation

• VeryFast – 14 MHz operation

• Unlimited – Uncapped operation
-Debug Crossrunner will startup in low-level (assembly language) Debug mode in

a Stopped state. This switch cannot be combined with -DebugSource.
-DebugSource Crossrunner will startup in high-level (C/Pascal) Debug mode and only run

until the first high-level line of code is encountered. This switch cannot be

combined with -Debug.
-CompatibilityLayer Crossrunner will operate in compatibility layer mode. In this mode, GS/OS

calls are redirected to the host’s filesystem and Toolbox calls are run

natively instead of being emulated from ROM.
-Source <filenames> Specify one or more filenames of source code (C or Pascal) or assembler

output (ORCA/M or Merlin) to be debugged. See Chapter 5 for more

information.
-Map <filename> Specify the linker map output (ORCA) or link file (Merlin) to be debugged.

See Chapter 5 for more information.
filename The program to run.

• This can be a disk image (.dsk, .po, .do, .nib, .hdv, .2mg or .woz)

that will be booted from.

• This can be a GS/OS OMF file that will be executed.

Thanks
Thanks to John Brooks. Nobody understands Apple IIGS video on a cycle-by-cycle basis better than John and

Doug Snyder. John patiently answered my many questions, and saved me countless hours.

Thanks to Alex Lee. Alex did the Apple IIGS system image and the drive icons at the bottom of the screen. He

has collated and clean up a huge library of Apple II and IIGS box art which he has kindly shared with this project.

Thanks to 4am and qkumba. They have done, and continue to do, an amazing amount of preservation and clean

cracking of Apple II software. The Crossrunner library is built upon their hard work.

Thanks to Larry Greene. He is the person who rewound time to turn the Mark Twain source code into the ROM

03 source code, which can be used within Crossrunner.

Thanks to Kent Dickey. He was one of the blazing pioneers in the Apple IIGS emulation space. After development

of KEGS stopped for several years, it gave me the incentive to create Crossrunner. Now that KEGS is in active

development again, Apple II enthusiasts have more options for quality emulators than ever before.

Thanks to all the beta testers. This project has been in development, and in beta, for far longer than I could ever

have imagined at the start.

Third Party Libraries
Pugixml (https://github.com/zeux/pugixml)
Copyright (c) 2006-2022 Arseny Kapoulkine

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit

persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the

Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Miniaudio (https://github.com/mackron/miniaudio)
Copyright 2020 David Reid

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit

persons to whom the Software is furnished to do so.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS

FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR

COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN

CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

SQLite (https://www.sqlite.org/)
All of the code and documentation in SQLite has been dedicated to the public domain by the authors.

NTSC-CRT (https://github.com/LMP88959/NTSC-CRT)
Feel free to use the code in any way you would like, however, if you release anything with it, a comment in your

code/README saying where you got this code would be a nice gesture but it’s not mandatory.

The software is provided "as is", without warranty of any kind, express or implied, including but not limited to

the warranties of merchantability, fitness for a particular purpose and noninfringement.

In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in

an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other

dealings in the software.

